Differential modulation of Cav1.2 and Cav1.3-mediated glucose-stimulated insulin secretion by cAMP in INS-1 cells: distinct roles for exchange protein directly activated by cAMP 2 (Epac2) and protein kinase A.
نویسندگان
چکیده
Using insulin-secreting cell line (INS)-1 cells stably expressing dihydropyridine-insensitive mutants of either Cav1.2 or Cav1.3, we previously demonstrated that Cav1.3 is preferentially coupled to insulin secretion and [Ca2+]i oscillations stimulated by 11.2 mM glucose. Using the same system, we found that insulin secretion in 7.5 mM glucose plus 1 mM 8-bromo-cAMP (8-Br-cAMP) is mediated by both Cav1.2 and Cav1.3. Treatment of INS-1 cells or INS-1 cells stably expressing Cav1.2/dihydropyridine-insensitive (DHPi) channels in the presence of 10 microM nifedipine, with effector-specific cAMP analogs 8-(4-chlorophenylthio)-2'-O-methyladenosine-cAMP [8-pCPT-2'-O-Me-cAMP; 100 microM; Exchange Protein directly Activated by cAMP 2 (Epac2)-selective] or N6-benzoyl-cAMP [50 microM; Protein Kinase A (PKA)-selective] partially increased insulin secretion. Secretion stimulated by a combination of the two cAMP analogs was additive and comparable with that stimulated by 1 mM 8-Br-cAMP. In INS-1 cells stably expressing Cav1.3/DHPi in the presence of 10 microM nifedipine, N6-benzoyl-cAMP, but not 8-pCPT-2'-O-Me-cAMP, significantly increased glucose-stimulated insulin secretion. However, the combination of N6-benzoyl-cAMP and 8-pCPT-2'-O-Me-cAMP significantly increased glucose-stimulated secretion compared with N6-benzoyl-cAMP alone. In INS-1 cells, 8-Br-cAMP potentiation of insulin secretion in 7.5 mM glucose is blocked by thapsigargin (1 microM) and ryanodine (0.5 microM). In contrast, ryanodine has no effect on insulin secretion or [Ca2+]i oscillations stimulated by 11.2 mM glucose in INS-1 cells. Our data suggest that both Cav1.2 and Cav1.3 mediate insulin secretion stimulated by 7.5 mM glucose and cAMP via a mechanism that requires internal stores of Ca2+. Furthermore, cAMP modulation of secretion mediated by Cav1.2 seems to involve both Epac2 and PKA independently. In contrast, cAMP modulation of Cav1.3-mediated secretion depends upon PKA activation, whereas the contribution of Epac2 is dependent upon PKA activation.
منابع مشابه
The Intracellular II-III Loops of Cav1.2 and Cav1.3 Uncouple L-Type Voltage-Gated Ca Channels from Glucagon-Like Peptide-1 Potentiation of Insulin Secretion in INS-1 Cells via Displacement from Lipid Rafts
L-type Ca channels play a key role in the integration of physiological signals regulating insulin secretion that probably requires their localization to specific subdomains of the plasma membrane. We investigated the role of the intracellular II-III loop domains of the L-type channels Cav1.2 and 1.3 in coupling of Ca influx with glucose-stimulated insulin secretion (GSIS) potentiated by the inc...
متن کاملCav1.3 Is Preferentially Coupled to Glucose-Stimulated Insulin Secretion in the Pancreatic -Cell Line INS-1
L-Type Ca channel blockers inhibit glucose and KCl-stimulated insulin secretion by pancreatic cells. However, the role of the two distinct L-type channels expressed by cells, Cav1.2 and Cav1.3, in this process is not clear. Therefore, we stably transfected INS-1 cells with two mutant channel constructs, Cav1.2DHPi or Cav1.3 DHPi. Whole-cell patch-clamp recordings demonstrated that both mutant c...
متن کاملCav1.3 Is Preferentially Coupled to Glucose-Induced [Ca
The link between Ca influx through the L-type calcium channels Cav1.2 or Cav1.3 and glucoseor KCl-induced [Ca 2 ]i mobilization in INS-1 cells was assessed using the calcium indicator indo-1. Cells responded to 18 mM glucose or 50 mM KCl stimulation with different patterns in [Ca ]i increases, although both were inhibited by 10 M nifedipine. Although KCl elicited a prolonged elevation in [Ca ]i...
متن کاملInteraction between Munc13-1 and RIM is critical for glucagon-like peptide-1 mediated rescue of exocytotic defects in Munc13-1 deficient pancreatic beta-cells.
OBJECTIVE Glucagon-like peptide-1 (GLP-1) rescues insulin secretory deficiency in type 2 diabetes partly via cAMP actions on exchange protein directly activated by cAMP (Epac2) and protein kinase A (PKA)-activated Rab3A-interacting molecule 2 (Rim2). We had reported that haplodeficient Munc13-1(+/-) mouse islet beta-cells exhibited reduced insulin secretion, causing glucose intolerance. Munc13-...
متن کاملPhospholipase C-ε links Epac2 activation to the potentiation of glucose-stimulated insulin secretion from mouse islets of Langerhans.
Glucose-stimulated insulin secretion (GSIS) from pancreatic β-cells is potentiated by cAMP-elevating agents, such as the incretin hormone glucagon-like peptide-1 (GLP-1), and cAMP exerts its insulin secretagogue action by activating both protein kinase A (PKA) and the cAMP-regulated guanine nucleotide exchange factor designated as Epac2. Although prior studies of mouse islets demonstrated that ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of pharmacology and experimental therapeutics
دوره 318 1 شماره
صفحات -
تاریخ انتشار 2006